Machine Learning and Data Mining for Sports Analytics

...


anglais | 26-03-2025 | 132 pages

9783031866913

Livre de poche


67,40€

 Disponibilité
   Disponible à la livraison en 2-3 jours ouvrables

   Retour accepté sous 15 jours

   Livraison 5 euros. Des frais de traitement peuvent s’appliquer, veuillez vous renseigner avant l’annulation.




Couverture / Jaquette

This book constitutes the refereed proceedings of the 11th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2024, held in Vilnius, Lithuania, on September 9, 2024. The 9 full papers presented in this volume were carefully reviewed and selected from 21 submissions. They are grouped into the following topics: Individual sports; Basketball; Soccer; Other team sports/e-Sports.

Table des matières

.- Individual sports.

.- Characterizing Serves in Table Tennis.

.- Large Language Models on Race Commentary: Towards Granular Data in Cycling Analytics.

.- Basketball.

.- GraphEIV: A Framework for Estimating the Expected Immediate Value in Basketball Using Graph Neural Networks.

.- Mathematical models for "off-ball" scoring prediction in basketball.

.- Soccer.

.- An Analysis of the Influence of Game Context on Team Playing Style.

.- Augmented Intelligence for FIFA Predictions.

.- Transformer-based Framework for Versatile Analysis of Events Data in Soccer.

.- Other team sports/e-Sports.

.- Automated Detection of Shot Events in Game Phases Using GNSS Data from a Single Team.

.- Team Dynamics in DotA2 through Attention Mechanism.

Détails

Code EAN :9783031866913
Auteur(trice): 
Editeur :Springer Nature Switzerland-Springer Nature Switzerland-Springer International Publishing AG
Date de publication :  26-03-2025
Format :Livre de poche
Langue(s) : anglais
Hauteur :235 mm
Largeur :155 mm
Epaisseur :8 mm
Poids :213 gr
Stock :Impression à la demande (POD)
Nombre de pages :132
Mots clés :  Clustering; Data Mining; Machine Learning; Mixture Models; Neural Networks; classification and regression trees; ensemble methods; sports analytics; supervised learning