Machine Learning and Data Mining for Sports Analytics

...


anglais | 10-12-2020 | 152 pages

9783030649111

Livre de poche


56,16€

 Disponibilité
   Disponible à la livraison en 2-3 jours ouvrables

   Retour accepté sous 15 jours

   Livraison 5 euros. Des frais de traitement peuvent s’appliquer, veuillez vous renseigner avant l’annulation.




Couverture / Jaquette

This book constitutes the refereed post-conference proceedings of the 7th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2020, colocated with ECML/PKDD 2020, in Ghent, Belgium, in September 2020. Due to the COVID-19 pandemic the conference was held online.

The 11 papers presented were carefully reviewed and selected from 22 submissions. The papers present a variety of topics within the area of sports analytics, including tactical analysis, outcome predictions, data acquisition, performance optimization, and player evaluation.

Table des matières

Routine Inspection: A playbook for corner kicks.- How data availability aects the ability to learngood xG models.- Low-cost optical tracking of soccer players.- An Autoencoder Based Approach to SimulateSports Games.- Physical performance optimization in football.- Predicting Player Trajectoriesin Shot Situations in Soccer.- Stats Aren't Everything: Learning Strengths andWeaknesses of Cricket Players.- Prediction of tiers in the rankingof ice hockey players.- A Machine Learning Approach for Road CyclingRace Performance Prediction.- Mining Marathon Training Data to GenerateUseful User Proles.- Learning from partially labeled sequences forbehavioral signal annotation.




Détails

Code EAN :9783030649111
Auteur(trice): 
Editeur :Springer International Publishing-Springer International Publishing-Springer International Publishing
Date de publication :  10-12-2020
Format :Livre de poche
Langue(s) : anglais
Hauteur :235 mm
Largeur :155 mm
Epaisseur :9 mm
Poids :242 gr
Stock :Impression à la demande (POD)
Nombre de pages :152
Mots clés :  Artificial Intelligence; Computer Hardware; Computer Systems; Computer vision; Correlation Analysis; Data handling; Machine Learning; Sensors; data integration; databases; human-computer interaction (HCI); integrated data; user interfaces