67,40€
Retour accepté sous 15 jours
Livraison 5 euros. Des frais de traitement peuvent s’appliquer, veuillez vous renseigner avant l’annulation.
Couverture / Jaquette
Note biographique
Pierre Brémaud graduated from the École Polytechnique and obtained his Doctorate in Mathematics from the University of Paris VI and his PhD from the department of Electrical Engineering and Computer Science at the University of California, Berkeley. He is a major contributor to the theory of stochastic processes and their applications, and has authored or co-authored several reference books and textbooks.
Fonctionnalité
Thoroughly revises and updates the 1st edition, making it a completely self-contained textbook on Markov chains and stochastic processes
Includes material for basic and advanced courses on Markov Chains, with complementary material on continuous-time Markov chains and Markovian queueing theory
Improves reader-friendliness by including: a shared numbering system for the definitions, theorems and examples; titles for the examples and exercises; blue highlighting of important terms
Table des matières
Preface.- 1 Probability Review.- 2 Discrete-Time Markov Chains.- 3 Recurrence and Ergodicity.- 4 Long-Run Behavior.- 5 Discrete-Time Renewal Theory.- 6 Absorption and Passage Times.- 7 Lyapunov Functions and Martingales.- 8 Random Walks on Graphs.- 9 Convergence Rates.- 10 Markov Fields on Graphs.- 11 Monte Carlo Markov Chains.- 12 Non-homogeneous Markov Chains.- 13 Continuous-Time Markov Chains.- 14 Markovian Queueing Theory.- Appendices.- Bibliography.- Index.
Détails
Code EAN : | 9783030459840 |
Editeur : | Springer International Publishing-Springer International Publishing-Springer International Publishing |
Date de publication : | 24-05-2021 |
Format : | Livre de poche |
Langue(s) : | anglais |
Hauteur : | 235 mm |
Largeur : | 155 mm |
Epaisseur : | 31 mm |
Poids : | 861 gr |
Stock : | Impression à la demande (POD) |
Nombre de pages : | 576 |
Mots clés : | 60-XX 68-XX 82-XX 90-XX 92-XX 94-XX; Electrical Engineering; Ergodicity; Gibbs Fields; Markov Fields; Markov chains; Martingale; Monte Carlo simulation; Operations Research; Stochastic model; linear optimization; queueing theory; regenerative process; renewal theory |