Guide to Intelligent Data Science

Michael R. , Berthold-Christian , Borgelt-Rosaria , Silipo-Frank , Klawonn-Frank , Höppner


anglais | 08-08-2021 | 436 pages

9783030455767

Livre de poche


64,03€

 Disponibilité
   Disponible à la livraison en 2-3 jours ouvrables

   Retour accepté sous 15 jours

   Livraison 5 euros. Des frais de traitement peuvent s’appliquer, veuillez vous renseigner avant l’annulation.




Couverture / Jaquette

Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results.Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included.Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website.This practical and systematic textbook/reference is a ¿need-to-have¿ tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a ¿need to use, need to keep¿ resource following one's exploration of thesubject.

Note biographique

Prof. Dr. Michael R. Berthold is Professor for Bioinformatics and Information Mining in the Department of Computer Science at the University of Konstanz, Germany.

Prof. Dr. Christian Borgelt is Professor for Data Science in the departments of Mathematics and Computer Sciences at the Paris Lodron University of Salzburg, Austria; he also co-authored the Springer textbook, Computational Intelligence.

Prof. Dr. Frank Höppner is Professor of Information Engineering in the Department of Computer Science at Ostfalia University of Applied Sciences, Wolfenbüttel, Germany.

Prof. Dr. Frank Klawonn is Professor for Data Analysis and Pattern Recognition at the same institution and head of the Biostatistics Group at the Helmholtz Centre for Infection Research, Braunschweig, Germany; he has authored the Springer textbook, Introduction to Computer Graphics.

Dr. Rosaria Silipo is a Principal Data Scientist and Head of Evangelism at KNIME AG, Zurich, Switzerland.

Fonctionnalité

Supplies a broad-range of perspectives on data science, providing readers with a comprehensive account of the field

Presents a focus on practical aspects, in addition to a detailed description of the theory

Emphasizes the common pitfalls that often lead to incorrect or insufficient analyses, to help readers avoid such errors

Includes extensive hands-on examples, enabling readers to gain further insight into the topic

Table des matières

Introduction.- Practical Data Analysis: An Example.- Project Understanding.- Data Understanding.- Principles of Modeling.- Data Preparation.- Finding Patterns.- Finding Explanations.- Finding Predictors.- Evaluation and Deployment.- The Labelling Problem.- Appendix A: Statistics.- Appendix B: KNIME.

Détails

Code EAN :9783030455767
Auteur(trice): 
Editeur :Springer International Publishing-Springer International Publishing-Springer International Publishing
Date de publication :  08-08-2021
Format :Livre de poche
Langue(s) : anglais
Hauteur :235 mm
Largeur :155 mm
Epaisseur :24 mm
Poids :657 gr
Stock :Impression à la demande (POD)
Nombre de pages :436
Mots clés :  Bioinformatics; Cognition; KNIME; Statistics; calculus; classification; data analysis; databases; knowledge; modeling; pattern recognition